k階乘分之一求和公式推導過程?
用數學歸納法.
(1)當n=1時,1/(1+1)!=1/2=1-1/(1+1)!
(2)假設當n=k時等式成立,即1/(1+1)!+2/(2+1)!+…+k/(k+1)!=1-1/(k+1)!
那么,當n=k+1時,
1/(1+1)!+2/(2+1)!+…+k(k+1)!+(k+1)/(k+2)!
=1-1/(k+1)!+(k+1)/(k+2)!
=1-(k+2)/(k+2)!+(k+1)/(k+2)!
=1-1/(k+2)!
所以當n=k+1時,原等式依然成立.
綜合(1)(2)可得,原等式成立.
證明:
1.當n=1時,左邊=1/(1+1)!=1/2
右邊=1-1/(1+1)!=1/2=左邊
2.假設n=k時,1/(1+1)!+2/(2+1)!+…+k/(k+1)!=1-1/(k+1)!
那么n=k+1時,
左邊=1/(1+1)!+2/(2+1)!+…+k/(k+1)!+(k+1)/(k+1+1)!
=1-1/(k+1)!+(k+1)/(k+1)!(k+2)
=1-[1-(k+1)/(k+2)]/(k+1)!
=1-1/(k+2)(k+1)!
=1-1/(k+2)!
即n=k+1時等式也成立
題目應該是1/(1+1)!+2/(2+1)!+…+n/(n+1)!=1-1/(n+1)!吧?
左式+1/(n+1)!
= 1/(1+1)!+2/(2+1)!+…+n/(n+1)!+1/(n+1)!
=1/(1+1)!+2/(2+1)!+…+(n+1)/(n+1)!
=1/(1+1)!+2/(2+1)!+…+(n-1)/(n-1+1)!+1/n!
=1/(1+1)!+2/(2+1)!+…+(n-1)/n!+1/n!
=...
=1/(1+1)!+1/(1+1)!=1
證畢。