2的階乘推導?
答案:n!=Γ(n+1)
(-1/2)!=Γ(1/2)=√π
思路:利用伽瑪函數。
一個正整數的階乘(factorial)是所有小于及等于該數的正整數的積,并且0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。
亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。
擴展資料:
通常我們所說的階乘是定義在自然數范圍里的(大多科學計算器只能計算 0~69 的階乘),小數科學計算器沒有階乘功能,如 0.5!,0.65!,0.777!都是錯誤的。但是,有時候我們會將Gamma 函數定義為非整數的階乘,因為當 x 是正整數 n 的時候,Gamma 函數的值是 n-1 的階乘。
伽瑪函數(Gamma Function)
定義伽馬函數:運用積分的知識,我們可以證明Γ(s)=(s-1)× Γ(s-1)
所以,當 x 是整數 n 時,
這樣 Gamma 函數實際上就是階乘的延拓。