欧美一区二区三区,国内熟女精品熟女A片视频小说,日本av网,小鲜肉男男GAY做受XXX网站

flink輸出mysql

Apache Flink是一個(gè)開源的分布式流處理平臺(tái),它提供了一種高效的方式來(lái)處理大規(guī)模數(shù)據(jù)的流,可以輕松地進(jìn)行數(shù)據(jù)處理、分析和挖掘等任務(wù)。在實(shí)際應(yīng)用中,我們通常需要將Flink處理后的結(jié)果輸出到數(shù)據(jù)庫(kù)中進(jìn)行保存以供后續(xù)的分析和查詢。本文將介紹如何使用Flink將處理后的數(shù)據(jù)輸出到MySQL數(shù)據(jù)庫(kù)中。

首先,我們需要在Flink的環(huán)境中引入MySQL連接器依賴??梢酝ㄟ^(guò)在pom.xml文件中添加如下依賴實(shí)現(xiàn):

org.apache.flinkflink-sql-connector-mysql_2.11${your flink version}

然后,在代碼中初始化Flink環(huán)境和MySQL連接器,并將數(shù)據(jù)輸出到MySQL數(shù)據(jù)庫(kù)中。以下是一個(gè)Java代碼示例:

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableSchema;
import org.apache.flink.table.descriptors.Schema;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.*;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.types.utils.TypeConversions;
import java.util.Properties;
public class FlinkToMySQL {
public static void main(String[] args) throws Exception {
// 初始化 Flink 環(huán)境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// 初始化 MySQL 連接器
String sinkDDL = "create table test_sink " +
"(id int not null," +
" name varchar(255) not null," +
"age int not null," +
"primary key(id)) " +
"with (" +
"  'connector' = 'jdbc'," +
"  'url' = 'jdbc:mysql://localhost:3306/flinktest'," +
"  'driver' = 'com.mysql.jdbc.Driver'," +
"  'table-name' = 'person'" +
")";
tEnv.executeSql(sinkDDL);
// 創(chuàng)建數(shù)據(jù)來(lái)源
DataStreaminput = env.socketTextStream("localhost", 9999);
TableSchema schema = TableSchema.builder()
.field("id", DataTypes.INT())
.field("name", DataTypes.STRING())
.field("age", DataTypes.INT())
.build();
// 轉(zhuǎn)換數(shù)據(jù)類型
LogicalType[] types = new LogicalType[]{new IntType(),
new VarCharType(), new IntType()};
DataType[] fieldTypes = typesToDataType(types);
Schema tableSchema = new Schema.Builder()
.column("id", DataTypes.INT())
.column("name", DataTypes.STRING())
.column("age", DataTypes.INT())
.build();
Table table = tEnv.fromDataStream(input, tableSchema);
// 輸出數(shù)據(jù)到 MySQL 數(shù)據(jù)庫(kù)中
tEnv.executeSql("insert into test_sink select * from " + table);
env.execute();
}
private static DataType[] typesToDataType(LogicalType[] types) {
return TypeConversions.fromLogicalToDataType(types);
}
}

通過(guò)以上Java代碼示例,我們可以輕松地將Flink處理完成的數(shù)據(jù)輸出到MySQL數(shù)據(jù)庫(kù)中進(jìn)行保存,以供后續(xù)的分析和查詢。