MySQL是目前應(yīng)用最廣泛的關(guān)系型數(shù)據(jù)庫(kù)之一,而Elasticsearch(下文簡(jiǎn)稱es)是一款致力于實(shí)現(xiàn)全文搜索的數(shù)據(jù)分析引擎。兩者結(jié)合可以帶來更為強(qiáng)大的數(shù)據(jù)處理和檢索功能。
es與mysql數(shù)據(jù)庫(kù)的結(jié)合可以通過elasticsearch-jdbc插件實(shí)現(xiàn)。這個(gè)插件可以將mysql數(shù)據(jù)庫(kù)中的數(shù)據(jù)同步到es中,同時(shí)也支持將es中的數(shù)據(jù)寫回到mysql數(shù)據(jù)庫(kù)中。
curl -L -O http://xbib.org/repository/org/xbib/elasticsearch/plugin/elasticsearch-river-jdbc/2.3.0.5/elasticsearch-river-jdbc-2.3.0.5-plugin.zip
sudo /usr/share/elasticsearch/bin/plugin install file:///path/to/plugin/elasticsearch-river-jdbc-2.3.0.5-plugin.zip
導(dǎo)入數(shù)據(jù)時(shí),可以通過配置文件來指定需要同步的數(shù)據(jù)庫(kù)表、字段映射以及同步間隔等信息。同時(shí)也支持對(duì)數(shù)據(jù)進(jìn)行一些處理,如去重、數(shù)據(jù)過濾等。例如:
{
"type": "jdbc",
"jdbc": {
"url": "jdbc:mysql://localhost/mydb",
"user": "root",
"password": "root",
"sql": [{
"statement": "select * from users order by id"
}],
"index": "myindex",
"type": "user",
"schedule": "0 0-59 0-23 ? * *",
"elasticsearch": {
"cluster": "elasticsearch",
"host": "localhost",
"port": 9200
},
"index_settings": {
"index": {
"number_of_shards": 1,
"number_of_replicas": 0
}
},
"index_mapping": {
"user": {
"properties": {
"id": {
"type": "integer"
},
"name": {
"type": "string"
},
"age": {
"type": "integer"
}
}
}
}
}
}
在應(yīng)用中,可以使用elasticsearch-py模塊來實(shí)現(xiàn)對(duì)數(shù)據(jù)的檢索。例如:
from elasticsearch import Elasticsearch
es = Elasticsearch()
# 搜索年齡大于30歲的用戶
res = es.search(index="myindex", body={
"query": {"range": {"age": {"gte": 30}}}
})
for hit in res['hits']['hits']:
print(hit['_source'])
通過es與mysql數(shù)據(jù)庫(kù)的結(jié)合,我們可以更加靈活、方便地管理和檢索數(shù)據(jù),為數(shù)據(jù)處理和數(shù)據(jù)分析帶來更多的可能性。