謝謝邀請!
要想了解大數據與人工智能的區別,首先要從認知大數據和人工智能的概念開始。
大數據是物聯網、Web系統和信息系統發展的綜合結果,其中物聯網的影響最大,所以大數據也可以說是物聯網發展的必然結果。大數據相關的技術緊緊圍繞數據展開,包括數據的采集、整理、傳輸、存儲、安全、分析、呈現和應用等等。目前,大數據的價值主要體現在分析和應用上,比如大數據場景分析等。
人工智能是典型的交叉學科,研究的內容集中在機器學習、自然語言處理、計算機視覺、機器人學、自動推理和知識表示等六大方向,目前機器學習的應用范圍還是比較廣泛的,比如自動駕駛、智慧醫療等領域都有廣泛的應用。人工智能的核心在于“思考”和“決策”,如何進行合理的思考和合理的行動是目前人工智能研究的主流方向。
大數據和人工智能雖然關注點并不相同,但是卻有密切的聯系,一方面人工智能需要大量的數據作為“思考”和“決策”的基礎,另一方面大數據也需要人工智能技術進行數據價值化操作,比如機器學習就是數據分析的常用方式。在大數據價值的兩個主要體現當中,數據應用的主要渠道之一就是智能體(人工智能產品),為智能體提供的數據量越大,智能體運行的效果就會越好,因為智能體通常需要大量的數據進行“訓練”和“驗證”,從而保障運行的可靠性和穩定性。
目前大數據相關技術已經趨于成熟,相關的理論體系已經逐步完善,而人工智能尚處在行業發展的初期,理論體系依然有巨大的發展空間。從學習的角度來說,如果從大數據開始學習是個不錯的選擇,從大數據過渡到人工智能也會相對比較容易。總的來說,兩個技術之間并不存在孰優孰劣的問題,發展空間都非常大。