在微積分中,一個函數(shù)f的不定積分,或原函數(shù),或反導(dǎo)數(shù),是一個導(dǎo)數(shù)等于f的函數(shù)F,即F′=f。
不定積分和定積分間的關(guān)系由微積分基本定理確定。其中F是f的不定積分。
我們把函數(shù)f(x)的所有原函數(shù)F(x)+C(其中,C為任意常數(shù))叫做函數(shù)f(x)的不定積分,又叫做函數(shù)f(x)的反導(dǎo)數(shù),記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做積分號,f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式,C叫做積分常數(shù)或積分常量,求已知函數(shù)的不定積分的過程叫做對這個函數(shù)進行不定積分。
不定積分符號是“∫”,多重積分“?“。
比如:2x3的不定積分,表示為∫2x3dx。