應(yīng)該是點performance那個按鈕,顯示一個誤差下降曲線圖。事實上,不需過分關(guān)注這條曲線,除非是研究改進(jìn)算法提高收斂速度的。一般關(guān)注網(wǎng)絡(luò)的實際訓(xùn)練效果,以及實際應(yīng)用能力,如預(yù)測能力等。BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是1986年由Rumelhart和McCelland為首的科學(xué)家小組提出,是一種按誤差逆?zhèn)鞑ニ惴ㄓ?xùn)練的多層前饋網(wǎng)絡(luò),是目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。BP網(wǎng)絡(luò)能學(xué)習(xí)和存貯大量的輸入-輸出模式映射關(guān)系,而無需事前揭示描述這種映射關(guān)系的數(shù)學(xué)方程。
它的學(xué)習(xí)規(guī)則是使用最速下降法,通過反向傳播來不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小。BP神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。