欧美一区二区三区,国内熟女精品熟女A片视频小说,日本av网,小鲜肉男男GAY做受XXX网站

對數平方怎么處理

錢琪琛2年前16瀏覽0評論

對數平方怎么處理?

對數的性質及推導

定義:

若a^n=b(a>0且a≠1)

則n=log(a)(b)

根本性質:

1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

推導

1、由于n=log(a)(b),代入則a^n=b,即a^(log(a)(b))=b。

2、由于a^b=a^b

令t=a^b

所以a^b=t,b=log(a)(t)=log(a)(a^b)

3、MN=M×N

由根本性質1(換掉M和N)

a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

由指數的性質

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

又由于指數函數是單調函數,所以

log(a)(MN) = log(a)(M) + log(a)(N)

4、與(3)相似處置

MN=M÷N

由根本性質1(換掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指數的性質

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又由于指數函數是單調函數,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

5、與(3)相似處置

M^n=M^n

由根本性質1(換掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指數的性質

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又由于指數函數是單調函數,所以

log(a)(M^n)=nlog(a)(M)

根本性質4推行

log(a^n)(b^m)=m/n*[log(a)(b)]

推導如下:

由換底公式(換底公式見下面)[lnx是log(e)(x),e稱作自然對數的底]

log(a^n)(b^m)=ln(b^m)÷ln(a^n)

換底公式的推導:

設e^x=b^m,e^y=a^n

則log(a^n)(b^m)=log(e^y)(e^x)=x/y

x=ln(b^m),y=ln(a^n)

得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由根本性質4可得

log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

再由換底公式

log(a^n)(b^m)=m÷n×[log(a)(b)] -