楊輝三角是什么怎么證明?
楊輝,字謙光,北宋時期杭州人。在他1261年所著的《詳解九章算法》一書中,輯錄了如上所示的三角形數表,稱之為“開方作法本源”圖,并說它“出釋鎖算書,賈憲用此術”。賈憲是11世紀人。這就表明,楊輝三角的發現遠早于1261年,也不是楊輝首先發現的,而是楊輝之前約200年的賈憲創造的。
科學史上的任何發明創造都有其客觀背景和演變過程。楊輝三角的發現淵源于高次方程的數值解法。中國古代數學家們對高次方程數值解法的探索經歷了長時期的發展過程。那時候把求解一般方程的數值解法叫作“開方法”。這是因為一般方程的數值解法,都是由開方的方法推演出來的。特別地,開平方和開立方,實際上正是求解x=A和x=B的一種數值解法。早在魏末劉徽作注的《九章算術》中,就有完整的開平方法和開立方法。劉徽探索了這種方法的來源,作出了這種方法的幾何解釋。例如要求完全平方數55225的平方根,相當于求一面積為55225的正方形的邊長。注意到55225的平方根為一個三位數,可設正方形的邊長為100a+10b+c(即a、b、c分別為所求平方根的百位、十位、個位上的數字),然后逐一確定a、b、c。為此,劉徽把正方形劃分成如圖所示的七個部分,其中1、4、7三部分分別是邊長為100a、10b、c的正方形。
上一篇70的十六進制怎么算
下一篇月薪35k一般什么級別