Python是目前最受歡迎的編程語(yǔ)言之一,得益于其易學(xué)易用,強(qiáng)大的數(shù)據(jù)處理、機(jī)器學(xué)習(xí)和人工智能庫(kù),現(xiàn)在在聚類算法領(lǐng)域也有廣泛的應(yīng)用。在本篇文章中,我們將介紹一些最常用的Python聚類算法,包括層次聚類、k均值聚類、DBSCAN聚類、譜聚類等等。
#層次聚類 from scipy.cluster.hierarchy import linkage, dendrogram import matplotlib.pyplot as plt X = ... #輸入數(shù)據(jù)矩陣 Z = linkage(X, 'ward') fig = plt.figure(figsize=(25, 10)) dn = dendrogram(Z) plt.show() #k均值聚類 from sklearn.cluster import KMeans from sklearn.datasets import make_blobs X, y = make_blobs(n_samples=150, n_features=2, centers=3, cluster_std=0.5, shuffle=True) kmeans = KMeans(n_clusters=3) y_kmeans = kmeans.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis') #DBSCAN聚類 from sklearn.cluster import DBSCAN from sklearn.datasets import make_moons X, y = make_moons(n_samples=200, noise=0.05, random_state=0) dbscan = DBSCAN(eps=0.3, min_samples=5) y_dbscan = dbscan.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap='viridis') #譜聚類 from sklearn.cluster import SpectralClustering from sklearn.datasets import make_moons X, y = make_moons(n_samples=200, noise=0.05, random_state=0) spectral = SpectralClustering(n_clusters=2, affinity='nearest_neighbors', assign_labels='kmeans') y_spectral = spectral.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_spectral, s=50, cmap='viridis')
這些算法都有各自的優(yōu)缺點(diǎn),并且適用于不同的數(shù)據(jù)集和聚類方式。使用這些算法時(shí),需要根據(jù)具體情況進(jìn)行調(diào)參和選擇。在實(shí)際應(yīng)用中,這些算法可以應(yīng)用于人工智能、數(shù)據(jù)挖掘和圖像處理等領(lǐng)域,為我們提供了豐富的聚類工具。