arcsinx函數(shù)特殊值表?
反三角函數(shù)的特殊值: Arcsin 1=pi/2 arcsin 0.5=pi/6 arcsin (二分之根二)=pi/4 arcsin (二分之根三)=pi/3 arcsin 0=0 arcsin -1=-pi/2 arccos 1=0 arccos 0.5=pi/3 arccos (二分之根二)=pi/4 arccos (二分之根三)=pi/6 為了使單值的反三角函數(shù)所確定區(qū)間具有代表性,常遵循如下條件: 1、為了保證函數(shù)與自變量之間的單值對應,確定的區(qū)間必須具有單調(diào)性; 2、函數(shù)在這個區(qū)間最好是連續(xù)的(這里之所以說最好,是因為反正割和反余割函數(shù)是尖端的); 3、為了使研究方便,常要求所選擇的區(qū)間包含0到π/2的角; 4、所確定的區(qū)間上的函數(shù)值域應與整函數(shù)的定義域相同。這樣確定的反三角函數(shù)就是單值的,為了與上面多值的反三角函數(shù)相區(qū)別,在記法上常將Arc中的A改記為a,例如單值的反正弦函數(shù)記為arcsin x。