Python車牌識(shí)別6是一種基于Python編程語(yǔ)言實(shí)現(xiàn)的自動(dòng)車牌識(shí)別系統(tǒng)。該系統(tǒng)使用圖像處理算法對(duì)車輛上的車牌進(jìn)行快速、準(zhǔn)確的識(shí)別,從而提高交通管理效率和公共安全。
代碼實(shí)現(xiàn)如下:
# 導(dǎo)入必要的庫(kù)和模塊 import cv2 import numpy as np import pytesseract # 定義車牌識(shí)別函數(shù) def license_plate_recognition(image_path): # 讀取車牌圖片 img = cv2.imread(image_path) # 對(duì)圖像進(jìn)行預(yù)處理 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) canny = cv2.Canny(blur, 50, 150) # 查找輪廓 contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 儲(chǔ)存矩形框坐標(biāo) rects = [] for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) rects.append([x, y, x + w, y + h]) # 去除包含在其他矩形框內(nèi)的矩形框 indexes = [] for i in range(len(rects)): for j in range(len(rects)): if i != j and rects[i] != [-1, -1, -1, -1]: if rects[j][0]< rects[i][0] and rects[j][1]< rects[i][1] and rects[j][2] >rects[i][2] and rects[j][3] >rects[i][3]: indexes.append(i) break indexes = set(indexes) final_rects = [rects[i] for i in range(len(rects)) if i not in indexes] # 對(duì)矩形框進(jìn)行排序 final_rects.sort(key=lambda x: x[0]) # 判斷車牌號(hào)是否存在 if len(final_rects) == 0: return None # 從矩形框中提取車牌號(hào)圖像 x1, y1, x2, y2 = final_rects[0] plate_img = img[y1:y2, x1:x2] # 對(duì)車牌號(hào)圖像進(jìn)行二值化處理 gray_plate = cv2.cvtColor(plate_img, cv2.COLOR_BGR2GRAY) binary_plate = cv2.threshold(gray_plate, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # 利用pytesseract進(jìn)行車牌號(hào)識(shí)別 plate_text = pytesseract.image_to_string(binary_plate, lang='eng', config='--psm 6') # 返回車牌號(hào) return plate_text
通過(guò)這段Python代碼,我們可以實(shí)現(xiàn)對(duì)車輛上的車牌進(jìn)行自動(dòng)識(shí)別,提高了對(duì)交通管理和公共安全的保障效果。同時(shí),Python車牌識(shí)別6也有著廣泛的應(yīng)用前景,可以應(yīng)用在停車場(chǎng)管理、機(jī)場(chǎng)安檢、物聯(lián)網(wǎng)等領(lǐng)域。