Python是一種高級編程語言,具有簡潔、易讀、易于學(xué)習(xí)和使用的特點(diǎn)。它有著廣泛的應(yīng)用場景,包括電表識別。電表識別是一項(xiàng)基于數(shù)字圖像處理的技術(shù),可以自動識別電表讀數(shù)并精確抄表,提高抄表效率和減少誤差。
import cv2 import numpy as np from PIL import Image image_file = 'meter.jpg' #print("正在讀取文件夾 %s 中的圖片......" % image_file) img = cv2.imread(image_file) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV) kernel = np.ones((5,5),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2) sure_bg = cv2.dilate(opening,kernel,iterations=3) dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5) ret, sure_fg = cv2.threshold(dist_transform, 0.7*dist_transform.max(),255,0) sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg,sure_fg) ret, markers = cv2.connectedComponents(sure_fg) markers = markers+1 markers[unknown==255] = 0 markers = cv2.watershed(img,markers) img[markers == -1] = [255,0,0] #cv2.imshow('Segmented Meter', img) region = [(500, 194), (1236, 144), (1270, 306), (504, 356)] crop = img[region[1][1]:region[3][1], region[0][0]:region[2][0]] im = Image.fromarray(crop) #im.show() im2 = im.convert(mode='1') #im2.show() print("正在分析圖片中的數(shù)字......") text = pytesseract.image_to_string(im2, lang = 'eng', config='--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789') print(text)
以上是識別電表讀數(shù)的Python代碼,其中使用到了OpenCV庫和Pillow庫,也調(diào)用了tesseract-ocr引擎來識別數(shù)字。通過讀取電表圖片,先進(jìn)行圖像處理,再進(jìn)行分割和識別,最后得到電表讀數(shù),實(shí)現(xiàn)了電表自動抄表的功能。