Python 是一種解讀語言,在自然語言處理 (NLP) 中有著廣泛的應用,在 NLP 中有一種被廣泛應用的算法 HMM (隱馬爾可夫模型),而 Python 也提供了 HMM 的工具庫。以下是一個 Python 版的 HMM 算法示例:
import numpy as np class HMM: def __init__(self, observation, states, start_prob, trans_prob, emit_prob): self.observation = observation self.states = states self.start_prob = start_prob self.trans_prob = trans_prob self.emit_prob = emit_prob def forward(self, t, state): if t == 0: return self.start_prob[state] * self.emit_prob[state][self.observation[t]] return np.sum([self.forward(t - 1, s) * self.trans_prob[s][state] * self.emit_prob[state][self.observation[t]] for s in self.states]) def backward(self, t, state): if t == len(self.observation) - 1: return 1 return np.sum([self.trans_prob[state][s] * self.emit_prob[s][self.observation[t + 1]] * self.backward(t + 1, s) for s in self.states]) def forward_probability(self): return np.sum([self.forward(len(self.observation) - 1, s) for s in self.states]) def backward_probability(self): return np.sum([self.start_prob[s] * self.emit_prob[s][self.observation[0]] * self.backward(0, s) for s in self.states]) def viterbi(self): T = len(self.observation) viterbi = np.zeros((T, len(self.states))) backpointer = np.zeros((T, len(self.states)), dtype=int) viterbi[0] = self.start_prob * self.emit_prob[:, self.observation[0]].T for t in range(1, T): for s in self.states: viterbi[t, s] = np.max(viterbi[t - 1] * self.trans_prob[:, s]) * self.emit_prob[s, self.observation[t]] backpointer[t, s] = np.argmax(viterbi[t - 1] * self.trans_prob[:, s]) best_sequence = [np.argmax(viterbi[-1])] for t in range(T - 1, 0, -1): best_sequence.append(backpointer[t, best_sequence[-1]]) best_sequence.reverse() return best_sequence
上述代碼實現了 HMM 的三個基本操作:
- 前向算法 (forward)
- 后向算法 (backward)
- Viterbi 算法 (viterbi)
這些算法都是 HMM 中的基本算法,可以在 Python 中很容易地實現。使用這些算法,我們可以將 HMM 用于許多處理自然語言的應用場景,例如標注、分類以及翻譯。
上一篇python 版本號查詢
下一篇python 牛客輸入