Python樹回歸解析是一種機(jī)器學(xué)習(xí)技術(shù),它可以通過訓(xùn)練數(shù)據(jù)集來建立一個預(yù)測模型,然后使用該模型來預(yù)測未知數(shù)據(jù)的輸出值。樹回歸算法是一種基于樹結(jié)構(gòu)的遞歸分裂技術(shù),它將數(shù)據(jù)不斷地分成更小的子集,直到滿足某個終止條件為止。
Python樹回歸解析的過程主要包括以下幾個步驟:
1. 讀入數(shù)據(jù):首先需要從文件或者數(shù)據(jù)庫中讀入數(shù)據(jù)集。
import pandas as pd data = pd.read_csv('data.csv')
2. 特征選擇:選擇最優(yōu)特征作為當(dāng)前節(jié)點的分裂屬性。
def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet.iloc[0]) - 1 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet.values] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if (infoGain >bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature
3. 構(gòu)建樹:遞歸地構(gòu)建樹結(jié)構(gòu),直到滿足終止條件。
def createTree(dataSet, labels): classList = [example[-1] for example in dataSet.values] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataSet.iloc[0]) == 1: return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet.values] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree
4. 預(yù)測數(shù)據(jù):根據(jù)已構(gòu)建好的樹結(jié)構(gòu),對新數(shù)據(jù)進(jìn)行預(yù)測。
def classify(inputTree, featLabels, testVec): firstStr = list(inputTree.keys())[0] secondDict = inputTree[firstStr] featIndex = featLabels.index(firstStr) for key in secondDict.keys(): if testVec[featIndex] == key: if type(secondDict[key]).__name__ == 'dict': classLabel = classify(secondDict[key], featLabels, testVec) else: classLabel = secondDict[key] return classLabel
通過以上步驟,我們就可以得到一個能夠?qū)ξ粗獢?shù)據(jù)進(jìn)行預(yù)測的模型。在實際應(yīng)用中,我們可以使用交叉驗證等方法來評估模型的預(yù)測性能。