Vue是當前非常熱門的前端框架之一,越來越多的開發(fā)者選擇使用Vue來構建高質量的Web應用程序。當涉及到前端數(shù)據(jù)可視化和復雜計算時,需要一個強大的計算引擎來支持框架的運行。
GPU計算是一種能夠快速進行復雜計算的方法。通常我們會使用CUDA編寫GPU計算代碼,而在Vue中,由于其支持SSR,所以存在一些特殊的編譯要求。
// 利用GPU實現(xiàn)向四個方向的模糊濾鏡算法 export default { methods: { async gaussianBlur(imageData, radius) { const canvas = document.createElement('canvas') const context = canvas.getContext('2d') const { width, height } = imageData canvas.width = width canvas.height = height context.putImageData(imageData, 0, 0) const pixels = context.getImageData(0, 0, width, height) const gpu = new GPU({ mode: 'gpu', }) const kernel = gpu.createKernel(function (pixels, rowCount, columnCount, radius) { const imageData = pixels[this.thread.y][this.thread.x] const i = this.thread.x + rowCount * this.thread.y const totalWeight = (radius * 2 + 1) ** 2 let rTotal = 0 let gTotal = 0 let bTotal = 0 let currentRadius = 0 for (let y = -radius; y< radius + 1; y++) { for (let x = -radius; x< radius + 1; x++) { const rowOffset = x + this.thread.y const columnOffset = y + this.thread.x const pixelIndex = rowOffset * rowCount + columnOffset if ( rowOffset >-1 && columnOffset >-1 && rowOffset< columnCount && columnOffset< rowCount ) { currentRadius++ const weight = (1 - currentRadius / (radius + 1)) ** 2 rTotal += weight * imageData[pixelIndex * 4] gTotal += weight * imageData[pixelIndex * 4 + 1] bTotal += weight * imageData[pixelIndex * 4 + 2] } } } pixels[i * 4] = rTotal / totalWeight pixels[i * 4 + 1] = gTotal / totalWeight pixels[i * 4 + 2] = bTotal / totalWeight }).setOutput([rowCount, columnCount]) const result = kernel(pixels.data, height, width, radius) return new ImageData(result.flat(), width, height) }, }, }
這里我們使用了GPU.js來實現(xiàn)了向四個方向的模糊濾鏡算法。在Vue框架中使用GPU計算非常的方便,只需要引入GPU.js并編寫合適的計算核心即可實現(xiàn)復雜計算。